Performance Matters

Scaling Integration Processes to Meet the Needs of Your Business

James Ahlborn, Chief Software Architect, Dell Boomi

- Atoms
- Atoms vs. Molecules
- Atom Clouds
- Atom Workers
- Performance Scenarios

Agenda

Understanding the Atom

What is an Atom?

- Standalone, lightweight Java program
 - Deployable anywhere supported by modern Java Virtual Machine (JVM)
- Runtime engine for Boomi integration processes
- Single tenant only, single Boomi environment
- Scalable within the bounds of a single machine

Atom Performance

- Bounded by the host machine
- All integration processes executed in single JVM
- Typical integration process performance:

General **Real-time**

ETL

highly dependent on host machine (CPU, memory, and disk)

Atom Fault Tolerance

- Requires minimal downtime for release restarts
- Badly behaved integration processes can directly affect other processes
- Typical failure scenarios
 - Too many executions (CPU, memory, disk)
 - Too much data (memory, disk)
 - Runaway execution (CPU)

Atoms vs. Molecules

What is a Molecule?

- One or more lightweight Java programs
 - Deployable anywhere supported by modern Java Virtual Machine (JVM)
 - Requires shared filesystem (NFS, Windows File Share)
- Single tenant only, single Boomi environment
- Scalable across multiple machines

- Better scalability
 - Workloads distributed across multiple machines
- Better fault tolerance
 - Rolling restarts for zero downtime
 - Failure of a single node only affects executions on that node
- More complex administration
 - Requires shared file system
 - Requires appropriate intranet configuration

Molecule Selection Decision Points

- Do I require zero downtime?
 - Serving production APIs
- Do I have too much work to do?
 - A single machine is not enough
- Can I support it operationally?
 - Added installation and maintenance complexity

Atom Clouds

What is an Atom Cloud?

- One or more primary Java programs with many secondary Java runtime instances
 - Requires modern Windows or Unix/Linux variant
 - Requires shared filesystem (NFS, Windows File Share)
- Multi tenant only
- Multi Boomi environment (one per tenant)
- Scalable across multiple machines and multiple Java runtimes

Atom Clouds... wait, what?

- One or more primary Java programs with many secondary Java runtime instances
- All integration process executions happen in secondary JVMs (a.k.a. "Forked Execution")
 - One primary process execution per JVM
 - High fault tolerance... at a cost (JVM startup time)
 - What about real time executions? (more on this later)

To Host or Not to Host?

Boomi Atom Clouds

- Zero maintenance for you!
 - The true cloud experience
- Best Scalability
 - But not infinite aiming for the 80%

Private Atom Clouds

Tuned to your workloads

- More operational complexity
 - Requires experienced IT personnel
- Best Scalability

Atom Workers

What is an Atom Worker?

- Atom Cloud feature only
- One or more secondary JVMs per tenant
- Handles multiple primary process executions
- The answer to real-time performance in an Atom Cloud

Performance Scenarios

The Building Blocks

- CPU
- Memory
- Hard disk
- JVM, with heap space and thread(s)

The Performance Killer: Scarce Resources

Lots of Process Executions

- Contended resource: **CPU**
 - Best: multiple computers (molecule/cloud)
 - Also good: More CPUs per computer
- Contended resource: Memory/Heap
 - Good: More heap per JVM
 - Good: More memory per computer
 - Good: Multiple computers (molecule/cloud)

Lots of Documents, Big Documents

- Contended resource: Hard Disk
 - Good: More disk
- Contended resource: Memory/Heap
 - Same as last slide
- Contended resource: CPU
 - Good: Small documents
 - Flow control, multi-threading
 - Good: BIG documents
 - Flow control, multi-process (molecule/cloud)

Wrapping Up

Key Takeaways

- There are a lot of different options available to meet your integration performance needs
- One size does not fit all...
- But Boomi has all sizes!
 - Boomi can handle a wide range of performance and scalability requirements

Further Reading

- AtomSphere User Guide
 - Atoms, Molecules, and Clouds: Getting Started
 - Atom, Molecule and Cloud Setup Guide
 - High-Volume Troubleshooting
- Boomi Community
 - Atoms, Molecules, and Clouds: Pros and Cons (Feb 2017)

Connected Business with Boomi Webinar Series

Questions?